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Playing with nonuniform grids 
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~Department of  Mathematics, 2Laboratory for Materia Technica, University of Groningen, P.O. Box 800, 
9700 AV Groningen, The Netherlands 

Abstract. Numerical experiments with discretization methods on nonuniform grids are presented for the 
convection-diffusion equation. These show that the accuracy of the discrete solution is not very well predicted by 
the local truncation error. The diagonal entries in the discrete coefficient matrix give a better clue: the convective 
term should not reduce the diagonal. Also, iterative solution of the discrete set of equations is discussed. The same 
criterion appears to be favourable. 

1. Introduct ion  

Computat ional  fluid dynamics has reached the level that simulation of flow around complex 
configurations is beginning to become routine. Grid generation is an important  ingredient in 
these simulation methods. Often, boundary-conforming grids are generated,  which necessari- 
ly will be nonuniform. Additionally, it is generally expected that a high density of grid points 
is only necessary in regions of large solution activity (steep gradients, large curvature, etc.), 
whereas in the smoother  regions of the solution larger grid cells can be used. It is believed 
that the reduction of grid points also leads to a reduction of computational effort. Based on 
these expectations, adaptive grid generation methods are being developed,  which further 
enhance the nonuniformity of the computational grid. 

The next step in the simulation method is the discretization of the equations of motion. 
Discretization of nonuniform grids is not straightforward: e.g. there exist several ways to 
generalize the 'standard'  central-difference formulas. In a number of papers such generaliza- 
tions have been discussed; we mention [1-4]. These papers show that not every generaliza- 
tion conforms to the above expectations. Thus selections have been made, mainly based on 
the local truncation error  of the discretization method. 

This paper  will reconsider some of these generalizations of the central-difference method.  
It appears that their performance can be completely different. 'Unlucky'  generalizations can 
give rise to a dramatic increase of discretization error  and computational effort when the 
number  of grid points is reduced and the nonuniformity is increased, but much more benign 
behaviour  can also be achieved. An explanation of this behaviour will be given in terms of 
the spectra of the discrete coefficient matrices. Additionally, the relation with finite-volume 
and finite-element discretizations will be discussed. 

Subject to our numerical experiments is a one-dimensional convection-diffusion equation, 
in a convection-dominated case: 

dy d2y 
d ~ - k - - d x  2 = 0 ,  O~<x-<l~ , (1.1) 

with Dirichlet boundary conditions y(0) = 0 and y(1) = 1. Its solution reads 
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e x / k  - -  1 
y(x)  - el/k _ 1 (1.2) 

Solutions of singularity perturbed problems like (1.1) consist of a boundary-layer part and a 
smooth (inviscid) part outside the boundary layer. In order to resolve the former part a small 
mesh size is required; outside the boundary layer larger grid cells can be used. 

Two discretization methods will be invest igated- a simple one and a more sophisticated 
o n e -  which for uniform grids both are equal to the central-difference discretization. We 
begin with an extreme example with only one interior gridpoint; thereafter more gridpoints 
are used. 

2 .  F i n i t e - d i f f e r e n c e  f o r m u l a t i o n s  

Equation (1.1) will be discretized on a grid with grid points x i (i = 0 . . . .  , N),  where x 0 = 0 
and xN = 1. The following abbreviations are introduced 

h_ = x i - xi_ a , h+ = xi+ 1 - x i , Y- = Y i - 1  , Yo = Y i  , Y+ = Y i + l  • 

Two finite-difference methods will be investigated, which differ in the discrete treatment of 
the first-order derivative: 

d y _  y + - y _  l ( h + _ h _ ) y x x  1 h 3 + h  3_ 
Method A: dx h+ + h_ 2 6 h+ + h_ Yxxx + O(h3) 

- -  + O ( h +  - h _ )  ; ( 2 . 1 )  
h+ Y+ - Yo h_ Y o -  Y -  - -  _ _  - -  -[-  _ _  

h+ + h_ h+ h+ + h h 

- - h + y _  1 Method B: d_y_y = h2_y+ + (h2+ h2_)yo 2 
dx  h+h_(h+ + h_)  6 h+h-Yxxx + O(h3) 

_ - h +  Yo - Y -  + O ( h : )  ( 2 . 2 )  _ h Y +  Y o + _ _  _ _  . 

h+ + h h+ h+ + h h 

Method A simply estimates the local slope from the values in the adjacent grid points. 
Method B estimates the slope by passing a parabola through the three points y_,  Y0 and y+ 
(Fig. 1). The local truncation error of Method A looks larger than that of Method B: it 
contains an additional O(h+ - h ) term proportional to Yxx, and its coefficient of Yxxx is 

Method B 

y Y_~ 

t ~  h_ ~[ ~ h + - - J  
X i - 1  X i  X i + l  

F i g .  1 .  Discrete approximations of a first-order derivative on a nonuniform grid. 
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never  smaller than the corresponding coefficient for Method B. For a uniform grid both 
methods equal the second-order central-difference approximation. For a nonuniform grid the 
formal order  of the truncation error  depends on the smoothness of the grid during grid 
refinement.  On an algebraic grid (i.e. a grid obtained from a coordinate transformation) 
both methods have a second-order local truncation error,  but on an exponential  grid with a 
fixed stretching rate h+/h_ ~ 1 the local truncation error of Method A is only of first order.  

In both cases, the discrete derivative can be written as a linear combination of the slopes 
on the two adjacent intervals. The difference between both methods becomes clearly visible 
when h+ and h_ are significantly different: in Method A the discrete derivative approaches 
the slope on the coarsest interval, whereas for Method B it approaches the slope on the 

finest interval. 
For  both methods,  the second derivative is discretized as 

d2y _ h_y+ - (h+ + h_)y o + h+y_ 1 (h+ - h_)Yxx x + O(h 2) (2.3) 
d x  2 ½h+h_(h+ + h_) 3 

Next to the local truncation error,  the global discretization error  should be addressed. 
There to ,  let us consider quasi-uniform grids, i.e. grids for which the ratio between the largest 
grid cell and the smallest grid cell is bounded during refinement; these include algebraic 
grids, but  not exponential  grids. Manteuffel and White [5] have proved the global discretiza- 
tion error  of both methods to be of second order  on quasi-uniform grids. Thus, asymp- 
totically, for both methods the difference between the exact solution and its discrete 
approximation decays quadratically in the mesh size. However ,  as we will see, this gives only 
limited indication on the behaviour for finite, non-zero, mesh size. 

3. Numerical experiments 

3.1. One internal grid point 

By just looking at the shape of the solution of (1.1), it should be possible to approximate it, 
at least qualitatively, by a piecewise linear polynomial with only one internal point (N = 2). 
The  location of this point should be somewhere near the edge of the boundary layer, e.g. at 
a position where the exponential exp(x/k) in (1.2) is 10-20% of its value at x = 1. This yields 
a grid point somewhere between x = 1 - 2.3k and x = 1 - 1.6k. 

The  discrete solution in this single grid point x = 1 -  h+ can be computed analytically: 

M e t h o d A :  y = ( 1 - h + ) ( 1 - ½ h + / k ) = l - ½ h + / k + O ( k ) ;  (3.1) 

M e t h o d B :  y = ( 1 - h + ) ( 1 - h + - 2 k ) / ( 1 - 2 h + - 2 k ) = l + O ( k ) .  (3.2) 

The  asymptotic behaviour is derived under the assumption that h+ = O(k). It easily follows 
from (3.2) that,  for small values of k, Method B will not be able at all to approximate the 
exact solution (1.2). Method A can do a better  job, as can be seen from Table 1. Here  the 
discrete solution (3.1) is compared with the exact solution (1.2) for two small values of k: 
k = 10 -2 and k = 10 -5. Taking into account that only one internal grid point is used, we 
cannot  expect  any method to be bet ter  than Method A: by choosing h+ = 1.6k the exact 
solution in this grid point can even be reproduced. 
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Table I. Discrete versus exact solution of the convection-diffusion equat ion (1.1) using Method A with only one 
internal  grid point  

k = 10 2 k = 10 -5 

h÷/k  Discrete (3.1) Exact (1.2) Discrete (3.1) Exact (1.2) 

1 0.495 0.368 0.500 0.368 
1.6 0.197 0.202 0.200 0.202 
2 0.0 0.135 0.0 0.135 

3.2. More grid points 

Next, the nonuniform grid is refined to 10 grid cells to make the situation less extreme. 
Several grid point distributions will be investigated; some of them with abrupt changes in the 
size of the grid cells, some of them with more gradual changes. 

Abrupt grids 
The numerical experiments will begin with a grid consisting of two uniform parts. The 10 
grid cells are divided into 5 equal cells (h = k) inside the boundary layer, and 5 equal cells 
(h = 0.2 - k) outside the boundary layer. Thus the grid becomes 

G r i d l :  x i = i ( 0 . 2 - k ) ,  ( i = 0  . . . . .  5) ;  x i = l - ( 1 0 - i ) k ,  ( i = 6  . . . . .  10). 

Point i = 5 is the only point where the sizes of the adjacent grid cells are unequal: 
h_ = 0 . 2 -  k and h+ = k. If we think this grid refined by halving the grid cells, the grid is 
quasi-uniform, but it is not algebraic. 

Figure 2 shows the discrete solution for both methods on Grid 1. For comparison the exact 
solution is also indicated. The difference between the two methods is obvious; Method A 
produces better results. 

In Grid 1, the point where the abrupt change in mesh size takes place is an odd-numbered 
point (i = 5). It could make a difference when this point would be an even-numbered point, 
since even-numbered grid points are better coupled to the boundary condition at x = 0 than 
odd-numbered grid points (due to the odd/even decoupling). Therefore we will also 
investigate a different grid (Grid 1'), with 4 grid cells of size 0.25 - 1.5k and 6 grid cells of 
size k. Figure 3 shows that the solution of Method A is not very much influenced, but for 
Method B this change in the grid indeed makes a difference: the discrete solution strongly 
deteriorates! 

G R I D  1 

METHOD A 

. . . .  METHOD B 

- -- EXACT 

2 k = l O -  2 

Y 
1 

o i,, i; 
\ / \ / ; 

o X 

2 - 5  
k = l O  

Y 

1 ,, ',/ V' 
I ~ I X I 

o 

-1 
0 X 1 

Fig. 2. Discrete solutions on an abrupt  grid with 5 coarse grid cells, and 5 fine grid cells. 
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G R I D  1' 

M E T H O D  A 

. . . .  M E T H O D  B 

- -  - -  E X A C T  

2 - 2  
k = 1 0  

Y 
1 

-1 

2 

Y 
1 

o 

-1 
o X 1 X 

k = 1 0  - s  

Fig. 3. Discrete solutions on an abrupt grid with 4 coarse grid cells, and 6 fine grid cells. A comparison with Fig. 2 
shows a large sensitivity of Method B. 

Remark. It is stressed that on both grids there is only one grid point (i = 5) where the 
discrete formulas differ from central discretization. This is the only grid point where the two 
methods are different. It is surprising to see that one single grid point can have such a large 
influence. 

In a first attempt to explain the observed behaviour we refer to the limit form of both 
methods in case h+ and h_ are significantly different. Equation (1.1) possesses a boundary 
layer at the right-hand side of the interval, so a situation where h÷ < h is the natural one. 
Evaluating the coefficients in (2.2) it follows that, in the extreme case where h÷ ~ h ,  
Method B approaches a downwind (!) discretization. This can explain its bad behaviour. In 
contrast, Method A yields a discretization in which the upwind direction has the largest 
weight. 

In a grid point where h÷ -> h_ Method A uses mainly downwind information (although it 
does not become a downwind discretization), whereas Method B approaches an upwind 
discretization. To see whether this can bring Method A into difficulties, also a grid with fine 
grid cells near both ends of the interval has been tried. 

Grid 2: x I . . . .  , x  9 = k , 2 k ,  3k, 0 .25 ,0 .5 ,0 .75 ,  1 - 3 k ,  1 - 2 k ,  1 - k .  

Results for this grid are shown in Fig. 4. We see that Method A is hardly affected, but 
Method B is extremely bad (we must remember that there is still one grid point where it 
approaches a downwind discretization). 

In summary: On these quasi-uniform but non-algebraic grids, the local truncation error of 
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Fig. 4. Discrete solutions on an abrupt grid with small grid cells near both endpoints of the interval. 
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Fig. 5. Discrete solutions on an exponential grid. 

Method A is only of first order,  whereas that of Method B is of second order. Nevertheless, 
Method A gives good results for all three grids, whereas Method B is not able to produce an 
acceptable solution at all. Thus the local truncation error  does not give a reliable indication 
about  the behaviour of the global discretization error. 

Exponential grids 
In the above examples (Grids 1 and 1') there is only one grid point with non-equal adjacent 
cells, but in that point the stretching rate h+/h_ is extremely small. We will next present an 
example where all cells are different, but where the stretching rate is closer to unity. An 
exponentially stretched grid is chosen with a constant factor between the size of the 
successive grid cells. The grid points x i are given by 

Grid 3: xi+ I = x  i+S(x  i - x i _ l ) ,  ( i = l  . . . . .  9 ) ,  

where the stretching rate is S = h+/h_. Further,  as before x 0 = 0 and x~0 = 1. When S is kept 
constant during grid refinement, such a grid is not quasi-uniform. 

Methods A and B are applied to (1.1) for k = 10 -2 on a grid for which S = 0.7, and for 
k = 10 -5 with S = 0.3. The coarsest grid cells have a size about 0.3 and 0.7, respectively. The 
finest grid cells are about 0.012 and 0.000014, respectively, and lie well inside the boundary 
layer. The results are shown in Fig. 5. For  k = 10 -2 both methods do a good job. For  
k = 10 -5 Method B is having difficulties. 

3.3. Conclusion 

The results shown in Figs 2-5  have been summarized in Table 2, which shows the 
discretization error  II yox -yl12, computed with the trapezoidal rule. For all cases presented, 
Method A produces reasonable to fine results. Those of Method B are in most cases 
unacceptable,  and can even be extremely inaccurate (e.g. on Grids 1' and 2). From the 

Table 2. Discretization error Ily¢x- yll2 for Methods A and B on various grids 

k 10 -2 10 5 

Grid 1 1' 2 3 1 1' 2 3 

Method A 0.005 0.005 0.025 0.009 0.005 0.002 0.035 0.067 
Method B 1.124 0.235 3.530 0.038 0.706 >103 >103 0.856 
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examples presented,  it may be concluded that Method A is more accurate than Method B, 
although its local truncation error  is larger. In the next section we will try to explain the 
observed behaviour.  

4. Analysis of  discretization error 

To get a feeling about what is going on, it is good to have a closer look at the discretization 
error.  Let  the discrete system be given by 

A y = r .  

The  exact solution Yex satisfies a related equation 

AYex = r + ~'loc, 

where r~o c is the local truncation error.  The difference between the exact solution and its 
discrete approximation reads 

-1 (4.1) Yex -- Y = A ~'~oc • 

Thus the discretization error  is built from the product of the local truncation error  and the 
inverse of the coefficient matrix• The above experiments give an impression of the behaviour 
of this product.  Although available analytical techniques are only of modest power,  we will 
first try to explain the observed behaviour theoretically. 

There to ,  let us first consider the coefficient matrices of the above methods, denoted by A m 

and A B respectively• They possess a tri-diagonal structure 

a y _ + a o Y  o + a + y + = O .  (4.2) 

The  coefficients are: 

- h _  - 2 k  2k h+ - 2 k  
M e t h o d A :  a = h _ ( h + + h _ ) ,  a° h + h _ '  a÷ h + ( h + + h _ ) '  

- h + - 2 k  h + - h _ + 2 k  h - 2 k  
M e t h o d B :  a = h _ ( h + + h _ ) '  a° h+h_ ' a+ h + ( h + + h _ ) "  

In the sequel, we will in particular consider the spectra of the coefficient matrix A and of 
the shifted Jacobi matrix (diagA)-lA. These spectra can give information about the 
regularity of the coefficient matrix; also they play an important  role in the convergence of 
iterative solution methods• In the discussion use will be made of the following Lemma: 

L E M M A  1. Let A be a positive real matrix (i. e. A + A r is positive definite). Then for any 
positive definite matrix Q, the matrix QA is N-stable (i.e. all eigenvalues have a positive real 
part). 

Proof. See Veldman [6]. [] 
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We begin the analysis with Method A. Here the convective term does not contribute to the 
diagonal. This enables us to prove that its coefficient matrix A a is N-stable. In the next 
section we will prove that the matrix (diag AA)- IAA also is N-stable. 

T H E O R E M  1. The coefficient matrix A a of  Method A is N-stable. 
Proof. The proof starts by scaling A m with a diagonal matrix H = diag(h+ + h ) .  The 

matrix HA A possesses an anti-symmetric part (HA m)a which stems from the convective term, 

and a symmetric part (HAA) s which stems from the diffusive term. The latter part is 
diagonally dominant and hence positive definite, so by definition HA A is positive real. Since 

H -~ is positive definite, it follows from Lemma 1 that A a = H- I (HAA)  is N-stable. [] 

In Method B the convective term does contribute to the diagonal. Its contribution is 

negative when h+ < h ; it may even cause the diagonal to become negative. As we shall see, 
this is the reason that for Method B a similar theorem does not hold. This will be shown by 

determining the spectrum of A B numerically. 
Table 3 shows the eigenvalues of the coefficient matrices for Methods A and B on Grid 1. 

It is possible to associate the above eigenvalues with part of the grid. When the entries in a 

coefficient matrix like (4.2) are constant, under Dirichlet boundary conditions its eigenvalues 

are given by 

a o+2(a_a+) 1/2cos(nIt~N), ( n = l , . . . , N - 1 ) .  (4.3) 

Grid 1, as used in Table 3, consists of two uniform parts with five equal grid cells. Therefore 

set N = 5, and substitute the corresponding values for the coefficients a_,  a 0 and a+. Then 
for both parts of the grid, (4.3) yields four eigenvalues. Assuming k to be small, these are 

given by: 

eigenvalues coarse grid cells: 50k --- 4.045i ; 50k --- 1.545i ; (4.4a) 

eigenvalues fine grid cells: (2--- 1.40126)/k ; (2---0.53523)/k.  (4.4b) 

Comparing these values with those of Table 3 we can conclude: 
- t h e  eigenvalues 1-4 of Method B approach the coarse-grid values (4.4a) as k--->0; 
- t h e  eigenvalues 6-9  of Method A approach the fine-grid values (4.4b) as k-->0. 
Thus we are tempted to associate eigenvalues 1-4 with the four points in the coarse part of 

Table 3. Eigenvalues of the coefficient matrix for Methods A and B on Grid 1. The fifth eigenvalue is 'irregular'; for 
Method B it can become negative 

Method A Method B 

4f k=10 -2 k=10 5 k=10 2 k=10 5 

1, 2 0.898 --- 4.386i 0.354 -+ 4.163i 0.414 -+ 4.633i 0.0005 - 4.045i 
3, 4 1.736 -+ 2.314i 1.250 +- 2.141i 0.426 - 2.819i 0.0005 _+ 1.545i 
5 2.258 1.836 0.52 -6194.4 
6 61.71 59875.8 15.84 10441.8 
7 148.42 146478.5 122.39 119929.1 
8 254.64 253524.4 240.92 239565.7 
9 340.44 340126.2 336.65 336272.8 
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Fig. 6. 'Irregular' eigenvalue of coefficient matrix A ( ) and shifted Jacobi matrix D-~A ( - - - )  for Method B on 
nonuniform Grid 1. Observe that both A and D can become singular. 

the grid, and eigenvalues 6 -9  with the four grid points in the fine part. Eigenvalue 5 is left 
over; we will call it the 'irregular' eigenvalue. Let  us now concentrate on this eigenvalue. 

For  Method A the 'irregular' eigenvalue always has a positive real part,  as this holds for 
each eigenvalue (Theorem 1), but Table 3 shows that for Method B the 'irregular'  
eigenvalue can become negative. To learn more about the behaviour of this eigenvalue we 
have computed it for a range of k-values. The result is presented in Fig. 6. We see that the 
' irregular'  eigenvalue vanishes when k = k A ~ 0.0084, making A B singular and the global 
error  (4.1) increases without limit. For smaller values of k it becomes negative; AB is no 
longer N-stable then. 

5.  C o m p u t a t i o n a l  e f for t  a n d  i terat ive  p e r f o r m a n c e  

Another  aspect which is influenced by the discretization method is the way in which the set 
of equations can be inverted. As direct inversion is not always a feasible strategy, iterative 
techniques are often used. The structure of the matrix determines to a large extent which 
iterative techniques are applicable. 

The problem to be solved may make it desirable to base the iteration method on time 
integration of the unsteady, semi-discretized version 

dy 
d t  + Ay = r .  (5.1) 

This is especially the case for highly non-linear problems, where existence or uniqueness of a 
steady-state solution cannot be guaranteed. Then time-integration methods are the best 
means to pursue the solution since they follow the physics more closely. Equation (5.1) does 
only possess a steady-state limit if and only if the matrix A is N-stable; hence this property is 
a necessary condition for time-integration methods to converge. However ,  as we will show 
below, for one of the above discretization methods this condition cannot always be satisfied. 

As an example,  consider first a grid with one internal grid point (N = 2, see Section 3.1). 
Method B yields a central coefficient a 0 which is negative. Hence,  in this situation with one 
internal point,  time integration in combination with Method B will never converge (unless 
one chooses At < 0, or selects an integration method with a large amount  of numerical 
diffusion). Of course, for sufficiently fine (uniform) grids Method B can successfully be 



128 A.E.P.  Veldman and K. Rinzema 

combined with time integration. Thus here a decrease of the number of grid points leads to 
an unlimited increase of computational effort! 

There are more iterative methods for which N-stability of the coefficient matrix is 

necessary (and sufficient) for convergence, e.g. Chebyshev iteration [6]. Other iterative 
methods,  like JOR and SOR, converge under a different criterion, as formulated in the next 
Lemma (Young [7], Ch. 6). 

L E M M A  2. For consistently ordered matrices A, SOR and JOR converge for a sufficiently 
small relaxation parameter if and only if (diag A) = 1A is N-stable. 

Lemma 2 implies that the last example (N = 2 and Method B) can be treated by SOR or 

JOR.  In general, however, convergence of SOR or J O R  applied to the coefficient matrix 
from Method B cannot be guaranteed, as we will see below. In contrast, again Method A 
gives no problems. 

T H E O R E M  2. The shifted Jacobi matrix (diag A A ) - I A A  is N-stable. 
Proof. Let H be the scaling matrix defined in the proof  of Theorem 1. As H and 

D A = diagA are positive definite, a l s o  (HDA) -1 is positive definite. Then it follows from 
Lemma 1 that DA1AA = (HDA)-II-IAA is N-stable. [] 

Combining Lemma 2 and Theorem 2, it follows that the discrete equations created by 
Method A can always be solved iteratively by methods like JOR and SOR. As we saw earlier 

in Theorem 1, for these equations also time-integration methods are applicable. 

Since Method B cannot be treated analytically, we have determined the eigenvalues of the 
shifted Jacobi matrix numerically. As an example, in Table 4 the eigenvalues corresponding 

with Methods A and B on Grid 1 are shown. They come in pairs of which the sum equals 2. 

Again,  it is possible to associate the eigenvalues with part of the grid. In the same way as 

above, the eigenvalues corresponding with the coarse and fine parts of the grid can be 

computed.  When k---~ 0 we obtain: 

eigenvalues coarse grid cells: 1 -+ 0.08090i/k ; 1 -+ 0.03090i/k ; 

eigenvalues fine grid cells: 1 --- 0.7006 ; 1 -+ 0.2676. 

The first four eigenvalues of both methods can clearly be associated with the coarse part of 
the grid. We have arranged the other five according to their distance from 1. The fifth and 
sixth eigenvalue form the interesting 'irregular' pair; for Method B one of these eigenvalues 

can become negative (call this one #5) .  Its adjoint eigenvalue (#6) then becomes larger than 2. 

Table 4. Eigenvalues of D-1A for Methods A and B on Grid 1. Note that for Method B the fifth eigenvalue can 
become negative 

Method A Method B 

# k = 10 2 k = 10 5 k = 10 -2 k = 10 -s 

1, 2 1.0 --- 7.68i 1.0 --- 8089.8i 1.0 -+ 7.64i 1.0 ± 8092.0i 
3, 4 1.0 ± 3.17i 1.0 ± 3090.3i 1.0 ± 2.91i 1.0 --- 3090.3i 
5, 6 1.0 ± 0.792 1.0 --- 0.824 1.0 +-- 1.001 1.0 --- 0.997 
7, 8 1.0 ± 0.485 1.0 ± 0.509 1.0 ± 0.565 1.0 ± 0.564 
9 1.0 1.0 1.0 1.0 
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To obtain more insight into its behaviour we have computed the 'irregular' fifth eigenvalue 
of D-~A for various values of k (Fig. 6). At  k = k D = 0.05 the diagonal element a 0 vanishes, 
making D singular. As a result, for kSk o the imaginary part of the 'irregular' eigenvalue (and 
its adjoint) grows without limit (A---~ 1---~i). When k decreases below k D this eigenvalue 
becomes negative real. For k~k o it approaches minus infinity (and its adjoint approaches 
positive infinity). Lowering k further, the 'irregular' eigenvalue vanishes at k = k a where A 
becomes singular, and is slightly positive for k < k m . 

In summary: The coefficient matrix of Method A is never singular; it even is N-stable, hence 
time integration can be applied. Also, DA1AA is N-stable, therefore methods like SOR and 
J O R  are applicable. For Method B it cannot be guaranteed that the coefficient matrix is 
N-stable, making time integration impossible. In fact, when the diagonal coefficient is 
negative, it turns out that either A B or D~IAB is no longer N-stable. Already for k = 1/20, 
where the stretching rate in the irregular grid point is 1/3, the shifted Jacobi matrix becomes 
singular. Lowering k further, for k = 0.0084 (where the stretching rate is 0.04) the coefficient 
matrix A B itself becomes singular. 

6. Relation with other methods 

Methods A and B can be considered as two special members of a family of discretization 
methods which approximate the first-order derivative in a grid point as a combination of the 
derivatives on the adjacent intervals: 

d__y_y Y+ - Yo + (1 - w) Y° h y -  (6.1) 
dx -- w h-----~ --- 

Method A is the only member of the family (6.1) for which the diagonal contribution 
vanishes. For all other members the diagonal is affected, and it is likely that they suffer from 
the same difficulties as Method B. This expectation has already been confirmed in a 2D 
finite-volume context. Rossow [8] has studied two cell-vertex methods: the method of Hall 
[9] which in one dimension equals Method A, and the method of Ni [10] which in one 
dimension fits in (6.1) for w = 1/2. His calculations show that the method of Hall is better 
than the method of Ni, which is in agreement with our findings. 

In our experiments, the discretization has been performed in physical space. An alterna- 
tive would have been to transform the equations to computational space, where the grid is 
uniform. However, now similar difficulties arise when the derivatives of the coordinate 
transformation have to be approximated; see e.g. Mynett  et al. [11]. 

Also a link with finite-element methods can be made. These methods have become very 
popular,  not in the least because of their good performance on irregular domains. Thus it is 
interesting to find out which finite-difference analogue corresponds with the 'standard' 
finite-element discretization: it turns out to be Method A. 

7. Discussion 

We have presented exploratory, one-dimensional calculations on nonuniform grids for two 
discretization methods. On uniform grids the methods are identical, but on nonuniform grids 
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they  appea r  to behave  quite differently. One  of  them is very  sensitive to the choice of  the 

grid, the o ther  one  is more  benign.  Also  they react  totally different  on iterative solut ion 
techniques .  This behaviour  can be explained by looking at the spec t rum of  the coefficient 
matr ices.  

M e t h o d  A yields a matrix which is always N-stable  and hence  never  singular. E v e n  on 

ex t remely  s t re tched grids this me thod  produces  acceptable  discretization errors.  Also the 

shif ted Jacobi  matrix (diag AA)-IAA is N-stable.  As  a result mos t  i terative solution me thods  
are  applicable.  

In  M e t h o d  B the convect ive  term can reduce  the diagonal  of  the coefficient matrix A B. As  

a consequence  A B can become  singular,  hence  the discretization er ror  can grow wi thout  

limit. Also  A B and its shifted Jacobi  matrix are not  always N-stable ,  which restricts the 
n u m b e r  o f  applicable iterative solution methods .  

Thusfar ,  discussions about  discretization methods  on nonun i fo rm grids have concen t ra ted  
on  the  local t runcat ion  error .  In  1971, Crowder  and Da l ton  [1] a l ready observed  that  M e t h o d  

B behaves  poor ly  on abrupt  grids. The  improvemen t  has been  sought  in construct ing 
s m o o t h e r  grids, e.g. grids ob ta ined  f rom a coord ina te  t ransformat ion  (i.e. algebraic grids) as 

descr ibed  in [2]. For  more  recent  discussions on this subject ,  see [3] and [4]. M e t h o d  A has 

of ten  been  men t ioned ,  but  each t ime it was re jected because of  its local t runcat ion error.  
T h e  present  exper iments  show that  this re ject ion has been  p remature ;  M e t h o d  A is much  

m o r e  powerfu l  than general ly assumed.  

In conclusion: Nonun i fo rm grids can be efficient, p rovided  one chooses  a suitable discretiza- 
t ion me thod .  The  local t runcat ion error ,  which is smallest for  M e t h o d  B, does not  give a 

useful  indicat ion about  the suitability of  a method .  Ins tead,  the above  results strongly 
suggest  to  use M e t h o d  A.  The  under lying principle seems to be that  a convect ive te rm 

should  never  reduce  the diagonal  of  a coefficient matrix. We have demons t r a t ed  this with 
some  one-d imens iona l  examples.  It is likely that  the above  e lementa ry  findings carry over  

directly to more-d imens iona l  problems.  Because  of  the somewha t  surprising nature  of  the 

results, fur ther  detai led research is r e c ommended .  
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